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Approximation by Zygmund means in
variable exponent Lebesque spaces

Sadulla Z. Jafarov

Abstract. In the present work we investigate the approximation of the
functions by the Zygmund means in variable exponent Lebesgue spaces.
Here the estimate which is obtained depends on sequence of the best
approximation in Lebesgue spaces with variable exponent. Also, these
results were applied to estimates of approximations of Zygmund sums
in Smirnov classes with variable exponent defined on simply connected
domains of the complex plane.

1. Introduction and the Main Results

Let T denote the interval [−π, π]. Let us denote by ℘ the class of Lebesgue
measurable functions p : T −→ (1,∞) such that 1 < p∗ := ess inf

x∈T
p(x) ≤

p∗ := ess
x∈T

sup p(x) <∞. The conjugate exponent of p(x) is shown by p′(x) :=

p(x)
p(x)−1 . For p ∈ ℘, we define a class Lp(.)(T) of 2π periodic measurable
functions f : T→ R satisfying the condition∫

T

|f(x)|p(x) dx <∞.

This class Lp(.)(T) is a Banach space with respect to the norm

‖f‖Lp(.)(T) := inf{ λ > 0 :

∫
T

∣∣∣∣f(x)

λ

∣∣∣∣p(x)

dx ≤ 1}.

We say that the variable exponent p(x) satisfies local log- continuity condi-
tion, if there is a positive constant c1 such that

(1) | p(x)− p(y) |≤ c1

− ln |x− y|
,

for all x, y ∈ T, |x− y| < 1
2 .
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28 Approximation in variable exponent Lebesgue spaces

A function p ∈ ℘ is said to belong to the class ℘log, if the condition
(1) is satisfied.The spaces Lp(.)(T) are called generalized Lebesgue spaces
with variable exponent. It is know that for p(x) := p (0 < p ≤ ∞), the
space Lp(x)(T) coincides with the Lebesgue space Lp(T). For the first time
Lebesgue spaces with variable exponent were introduced by Orlicz [26]. Note
that the generalized Lebesgue spaces with variable exponent are used in the
theory of elasticity, in mechanics, especially in fluid dynamics for the mod-
elling of electrorheological fluids, in the theory of diferential operators, and
in variational calculus [4], [6], [7] and [28]. Detailed information about prop-
erties of the Lebesque spaces with variable exponent can be found in [8], [24]
and [31]. Note that, some of the fundamental problems of the approximation
theory in the generalized Lebesgue spaces with variable exponent of periodic
and non-periodic functions were studied and solved by Sharapudinov [32]-
[35].

Let

(2)
a0

2
+

∞∑
k=1

Ak(x, f), Ak(x, f) := ak(f) cos kx+ bk(f) sin kx

be the Fourier series of the function f ∈ L1(T), where ak(f) and bk(f) are
Fourier coefficients of the function f . The n − th partial sums, Zygmund
means of order k (k ∈ N) of the series (2) are defined, respectively as [12],
[36]:

Sn(x, f) =
a0

2
+

n∑
k=1

Ak(x, f),

Zn,k(x, f) =
a0

2
+

n∑
ν=1

(
1− νk

(n+ 1)k

)
Aν(x, f), k = 1, 2, ..., n = 1, 2, ...

It is clear that

S0(x, f) = Z0,k(x, f) =
a0

2
.

For f ∈ Lp(.)(T) we define the Steklov operator by

sh(f)(x) =
1

h

x+h∫
x

f(t)dt =
1

h

h∫
0

f(u+ x)du

and the k − th−modulus of smoothness Ωk(f, ·, )p(.) (k = 1, 2, ...) by

Ωk(f, δ)p(.) = sup
0<hi≤δ
1≤i≤k

∥∥∥∥∥
k∏
i=1

(I − shi) (f)

∥∥∥∥∥
Lp(.)(T)

δ > 0,
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where I is the identity operator. Note that the k−th−modulus of continuity
Ωk(f, ·)p(.) is a nondecreasing, nonnegative, continuous function and

lim
δ→0

Ωk(f, ·)p(.) = 0, Ωk(f + g, ·)p(.) ≤ Ωk(f, ·)p(.) + Ωk(g, ·)p(.),

for f, g ∈ Lp(.)(T).
Let G be a finite domain in the complex plane C, bounded by a rectifiable

Jordan curve Γ, and let G− := extΓ. We denote

T∗ := {w ∈ C : |w| = 1} , D := intT∗ , D− := extT∗.

Let w = ϕ(z) be the conformal mapping of G− onto D− normalized by

ϕ(∞) =∞, lim
z→∞

ϕ(z)

z
> 0

and let ψ denote the inverse of ϕ.
For any measurable bounded exponent p(z) ≥ 1 we denote by Lp(.) (Γ)

the set of functions f, such that∫
Γ

|f(z)|p(z) |dz| <∞

and

‖f‖Lp(.)(Γ) := inf

α > 0 :

∫
Γ

∣∣∣∣f(z)

α

∣∣∣∣p(z) |dz| ≤ 1

 .

We denote by K segment [0, 2π] or Jordan rectifiable curve in the com-
plex plane C. We suppose that Lebesgue measurable function p(.) : K →
[0,∞) satisfies the following conditions:

(3) 1 ≤ p∗ := ess inf
z∈K

p(z) ≤ p∗ := ess
z∈K

sup p(z) <∞.

If p(.) satisfies the conditions (3) and

|p(z1)− p(z2| ≤
c

ln
(
|K|
|z1−z2|

) ,
we say that p(.) ∈ Φlog (K) ,where |K| is the Lebesgue measure of K. A
function p belong to the class Φlog

0 (K) if p(.) ∈ Φlog (K) with p∗ > 1 [18].
We define also the variable exponent Smirnov class Ep(.) (G) as

Ep(.) (G) :=
{
f ∈ E1 (G) : f ∈ Lp(.) (Γ)

}
.

For f ∈ Lp(.) (Γ) with p ∈ ℘log we define the function

f0(t) := f (ψ(t)) , t ∈ T∗,
p0(t) = p(ψ(t)).
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Let h be a continuous function on [0, 2π]. Its modulus of continuity is
defined by

ω (t, h) := sup {|h (t1)− h (t2)| : t1, t2 ∈ [0, 2π] , |t1 − t2| ≤ t} , t ≥ 0.

The curve Γ is called Dini-smooth if it has a parameterization

Γ : ϕ0(s), 0 ≤ s ≤ 2π,

such that ϕ′0(s) is Dini-continuous, i.e.
π∫

0

ω (t, ϕ′0)

t
dt <∞

and ϕ′0 (s) 6= 0 [27, p. 48].
If Γ is a Dini-smooth curve, then there exist [38] the constants c2, c3, c4

and c5 such that
(4)

0 ≤ c2 ≤
∣∣ψ′ (t)∣∣ ≤ c3 <∞, |t| > 1. 0 ≤ c4 ≤

∣∣ϕ′ (z)∣∣ ≤ c5 <∞, |t| > 1.

a.e. on T∗ and on Γ, respectively. Note that if Γ is a Dini-smooth curve,
then by (4) we have f0 ∈ Lp0(.) (T∗) for f ∈ Lp(.) (Γ). It is known that [15],
if Γ is a Dini-smooth curve, then p0 ∈ Φlog(T) if and only if p ∈ Φlog(Γ).

Let Γ be a rectifiable Jordan curve and f ∈ L1(Γ). Then the functions f+

and f− defined by Γ,

(5) f+(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
T

ψ
′
(w)

ψ(w)− z
f0(w)dw, z ∈ G

and

f−(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
T

ψ
′
(w)

ψ(w)− z
f0(w)dw, z ∈ G−,

are analytic in G and G− respectively, and f−(∞) = 0. Thus the limit

SΓ(f)(z) := lim
ε→0

1

2πi

∫
Γ∩{ζ: |ζ−z|>ε}

f(ζ)

ζ − z
dζ

exists and is finite for almost all z ∈ Γ.
The quantity SΓ(f)(z) is called the Cauchy singular integral of f at

z ∈ Γ.
According to the Privalov’s theorem [9, p. 431] if one of the functions

f+ or f− has the non-tangential limits a.e. on Γ, then SΓ(f)(z) exists
a.e. on Γ and also the other one has the non-tangential limits a.e. on Γ.
Conversely, if SΓ(f)(z) exists a. e. on Γ, then the functions f+(z) and f−(z)
have non-tangential limits a.e. on Γ. In both cases, the formulae

f+(z) = SΓ(f)(z) +
1

2
f(z), f−(z) = SΓ(f)(z)− 1

2
f(z)
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and hence
f = f+ − f−

holds a.e. on Γ.
Let ϕk(z), k = 0, 1, 2, ... be the Faber polynomials for G. The Faber

polynomials ϕk(z), associated with G∪Γ, are defined through the expansion

(6)
ψ′ (t)

ψ (t)− z
=
∞∑
k=0

ϕk (z)

tk+1
, z ∈ G, t ∈ D

and the equalities

ϕk (z) =
1

2πi

∫
|t|=R

tkψ′ (t)

ψ (t)− z
dt z ∈ GR, R > 1,

ϕk (z) = ϕk(z) +
1

2πi

∫
Γ

ϕk(s)

s− z
ds, z ∈ G−,

hold [30, p. 33-48].
Let f ∈ Ep(.) (G) . Since f ∈ E1 (G) ,we have

f(z) =
1

2πi

∫
Γ

f(s)

s− z
ds =

1

2πi

∫
T

f(ψ(t))ψ
′
(t)

ψ(t)− z
dt,

for every z ∈ G. Considering this formula and expansion (6), we can associate
with f the formal series

(7) f(z) ∼
∞∑
k=0

ck(f)ϕk (z) ,

where
ck(f) :=

1

2πi

∫
T

f(ψ(t))

tk+1
dt.

The series (7) is called the Faber series expansion of f, and the coefficients
ck(f) are said to be the Faber coefficients of f.

The Zygmund sums of the series (6) is defined as

Zn,k(z, f) =

n∑
ν=0

(1− νk

(n+ 1)k
)ck(f)ϕk(z).

Let P := {all polynomials (with no restriction on the degree)} , and let P (D)
be the set of traces of members of P on D. We define the operator

T : P (D)→ Ep(.) (G)

as

T (P )(z) :=
1

2πi

∫
T

P (w)ψ
′
(w)

ψ(w)− z
dw, z ∈ G.
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Then using (6) we have

T

( ∞∑
k=0

αkw
k

)
=
∞∑
k=0

αkϕk(z),

where ϕk(z), k ∈ N, are the Faber polynomials of G. Use of (5) and (6)
gives us Faber series representation

f+(z) =

∞∑
k=0

ck(f)ϕk(z),

where

ck(f) =
1

2πi

∫
T

f0(w)

wk+1
, k ∈ N.

We shall use the c, c1, c2, ... to denote constants (in general, different in
different relations) depending only on quantities that are not important for
the questions of interest.

We denote by En(f)p(.) the best approximation of f ∈ Lp(.)(T) by trigono-
metric polynomials of degree not exceeding n, i.e.,

En(f)p(.) = inf{‖ f − Tn ‖
Lp(.)(T)

: Tn ∈ Πn},

where Πn denotes the class of trigonometric polynomials of degree at most
n.

Note that the properties of Lebesgue spaces with variable exponents have
been investigated intensively by many authors (see, for example, [4]-[8], [24]
and [31]).

The approximation problems in non-weighted and weighted Lebesgue
spaces with variable exponents were studied in [1], [2], [11], [15]-[19], [22],
[32]-[35] and [37].

In this study we investigate the approximation of the functions by Zyg-
mund means in variable exponent Lebesgue spaces. Note that estimates in
this study are obtained in terms of the best approximation En(f)p(.) and
modulus of smoothness. These results were applied to estimates of approxi-
mations of Zygmund sums in Smirnov classes with variable exponent defined
on simply connected domains of the complex plane. Similar problems of the
approximation theory in the different spaces have been studied by several
authors (see, for example, [3], [10], [12]-[14], [20]-[23], [25], [29], [36] and
[39]).

Note that for the proof of the new results obtained in the variable exponent
Lebesgue spaces we apply the method developed in [10], [13] and [15].

Our main results are the following.
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Theorem 1.1. Let f ∈ Lp(.)(T), r ∈ Z+, k ∈ N and let the series
∞∑
k=1

kr−1 Ek−1(f)
p(.)

converges. Then f is equivalent (equal almost everywhere) to a 2π− periodic
absolutely continuous function ψ ∈ AC (T) and the inequality∥∥∥ψ(r) − Zn,k

(
ψ(r)

)∥∥∥
Lp(.)(T)

≤ c6(k, r)

( ∞∑
ν=n+1

νr−1Eν−1(f)p(.) + n−k
n∑
ν=1

νk+r−1Eν−1(f)p(.)

)
, n ∈ N

holds.

Theorem 1.2. Let f ∈ Lp(.)(T), k ∈ N . Then the estimate

(8) Ωl

(
f,

1

n

)
p(.)

≤ c7 ‖f − Zn,k(f)‖Lp(.)(T)

holds, where l = {k, k − oven, k + 1, k − odd} .

Theorem 1.3. Let Γ be Dini -smooth curve and p(.) ∈ Φlog
0 (Γ) . Then for

f ∈ Ep(.)(G) the following estimate holds:

‖f − Zn,k (·, f)‖Lp(.)(Γ)

≤ c8 (p)

nr

{
n∑
ν=0

νγr−1Eν−1 (f)G,p(.)

}1/γ

where γ = min {2, p∗}.

The proof of the main results we need the following results.
Let f ∈ Ep(.)(D). Applying Corollary 1 in the work [23] for the boundary

values of f ∈ Ep(.)(D) we have:

Lemma 1.1. Let p(.) ∈ Φlog
0 (T) and f ∈ Ep(.)(D). Then the estimate

‖f − Zn,k (·, f)‖Lp(.)(T)

≤ c9 (p)

nr

{
n∑
ν=0

νγr−1Eν−1 (f)D, p(.)

}1/γ

n = 1, 2, . . . ,

holds, where γ = min {2, p∗}.

Lemma 1.2. Let Γ be a Dini- smooth curve and p(.) ∈ Φlog
0 (Γ) . If f ∈

Ep(.)(G), then

En
(
f+

0

)
D, p0(.)

≤ c10En(f)G,p(.) ≤ c11En(f+
0 )D,p0(.)

with some positive constants c10 and c11 independent of n.
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2. Proofs of Theorems

Proof of Theorem 1.1. According to [37, Theorem 6] f is equivalent (equal
almost everywhere ) to a 2π−periodic absolutely continuous function ψ ∈
AC (T) and the following inequality holds:

(9) En(ψ(r))p(.) ≤ c12

(
(n+ 1)r En(f)p(.) +

∑
k=n+1

kr−1Ek(f)p(.)

)
.

On the other hand the inequality

(10) ‖g − Zn,k(g)‖Lp(.)(T) ≤ c13n
−k

n∑
ν=1

νk−1Eν−1(g)p(.)

holds [23]. Using (9) and (10) we get∥∥∥ψ(r) − Zn,k(ψ(r))
∥∥∥
Lp(.)(T)

≤ c14n
−k

n∑
ν=1

νk−1Eν−1(ψ(r))p(.),

≤ c15n
−k

n∑
ν=1

νk+r−1Eν−1(f)p(.)

+c16n
−k

n∑
ν=1

νk−1
n∑

µ=ν+1

µr−1Eµ−1(f)p(.)

+c17n
−k

n∑
ν=1

νk−1
∞∑

µ=n+1

µr−1Eµ−1(f)p(.)

≤ c18n
−k

n∑
ν=1

νk+r−1Eν−1(f)p(.) + c19n
−k

n∑
µ=1

µr−1Eµ−1(f)p(.)

µ∑
ν=1

νk−1

+c20

∞∑
µ=n+1

µr−1Eµ−1(f)p(.)

≤ c21

( ∞∑
ν=n+1

νr−1Eν−1(f)p(.) + n−k
n∑
ν=1

νk+r−1Eν−1(f)p(.)

)
.

which completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let Tn(f, x) be a trigonometric polynomial of best
approximation to f in Lp(.)(T). It is known that the following identity
holds:

Tn(f, x)− Zn,k (Tn(f), x)

= f(x)− Zn,k(f, x) + Tn(f, x)− f(x)



Sadulla Z. Jafarov 35

+Zn,k(f − Tn(f), x).(11)

Considering [33] we obtain

(12) ‖Zn,k(f, ·)‖Lp(.)(T) ≤ c22 ‖f‖Lp(.)(T) .

Consideration of (11) and (12) gives us

‖Tn(f, x)− Zn,k (Tn(f), x)‖Lp(.)(T)

≤ ‖f − Zn,k(f)‖Lp(.)(T) + ‖Tn(f)− f‖Lp(.)(T)

+ ‖Zn,k(f − Tn(f))‖Lp(.)(T)

≤ ‖f − Zn,k(f)‖Lp(.)(T) + c23En(f)p(.)

≤ c24 ‖f − Zn,k(f)‖Lp(.)(T) .(13)

If k−is an even number the following relation holds:

(14) Tn(f, x)− Zn,k (Tn(f), x) = (−1)
k
2 (n+ 1)−k T (k)

n (f, x).

Then using (13),(14) and [37, Corollary 2] we get

Ωk

(
f,

1

n

)
p(.)

= Ωk

(
f − Tn(f) + Tn(f),

1

n

)
p(.)

≤ c25Ωk (f − Tn(f))p(.) + c26Ωk

(
Tn(f),

1

n

)
p(.)

≤ c27 ‖f − Tn(f)‖p(.) + c28n
−k
∥∥∥T (k)

n (f)
∥∥∥
Lp(.)(T)

≤ c29En(f)p(.) + c30 ‖Tn(f)− Zn,k (Tn(f))‖Lp(.)(T)

≤ c31En(f)p(.) + c32 ‖f − Zn,k (f)‖Lp(.)(T)

≤ c33 ‖f − Zn,k (f)‖Lp(.)(T) .(15)

Let T̃n
(k)

(f, x) be a trigonometric conjugate of T (k+1)(f, x). If k is a odd
number the relation

(16) Tn(f, x)− Zn,k (Tn(f), x) = (−1)
k+3
2 (n+ 1)−k T̃n

(k)
(f, x).

holds. Also, according to [37] we obtain

(17)
∥∥∥T (k+1)(f, x)

∥∥∥
Lp(.)(T)

≤ c34n

∥∥∥∥T̃n(k)
(f)

∥∥∥∥
Lp(.)(T)

.

Use of (16), (17) gives us

Ωk+1

(
f,

1

n

)
p(.)
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= Ωk+1

(
f − Tn(f) + Tn(f),

1

n

)
p(.)

≤ c35Ωk+1 (f − Tn(f))p(.) + c36Ωk+1

(
Tn(f),

1

n

)
p(.)

≤ c37 ‖f − Tn(f)‖p(.) + c38n
−(k+1)

∥∥∥T (k+1)
n (f)

∥∥∥
Lp(.)(T)

≤ c39En(f)p(.) + c40n
−k
∥∥∥∥T̃n(k)

(f)

∥∥∥∥
Lp(.)(T)

≤ c41En(f)p(.) + c42 ‖Tn(f)− Zn,k (Tn(f))‖Lp(.)(T)

≤ c41En(f)p(.) + c43 ‖f − Zn,k (f)‖Lp(.)(T)

≤ c44 ‖f − Zn,k (f)‖Lp(.)(T) .(18)

From (15) and (18) we obtain inequality (8). Thus, the proof of Theorem
1.2 is completed. �

Proof of Theorem 1.3. Let f ∈ Ep(.)(G). The function f has the Faber
series

f(z) ∼
∞∑
k=0

ck(f)ϕk(z)

Then by [18, Lemma 1] f+
0 ∈ Ep0(.)(D) and for the function f+

0 the Taylor
expansion

f+
0 (t) ∼

∞∑
k=0

ck(f)wk, w ∈ U

holds. According to [5, p. 38, Theorem 3.4] boundary function f+
0 ∈

Lp0(.)(T) has the Fourier expansion

f+
0 (t) ∼

∞∑
k=0

ck(f)eikt.

Using the boundedness of the operators T : Ep0(.)(D) → Ep(.)(G) , T−1 :

Ep(.)(G)→ Ep0(.)(D) [18], Lemma 1.1 and 1.2 we obtain

‖f − Zn,k (·, f)‖Lp(.)(�)

≤
∥∥T (f+

0

)
− T

(
Zn,k

(
·, f+

0

))∥∥
Lp(.)(Γ)

≤
∥∥f+

0 − Zn,k
(
·, f+

0

)∥∥
Lp0(.)(T)

≤ c45 (p)

nr

{
n∑
ν=0

νγr−1Eν−1

(
f+

0

)
D, p(.)

}1/γ

≤ c46 (p)

nr
∥∥T−1

∥∥{ n∑
ν=0

νγr−1Eν−1

(
f+

0

)
D, p0(.)

}1/γ
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≤ c47 (p)

nr

{
n∑
ν=0

νγr−1Eν−1

(
f+

0

)
G, p(.)

}1/γ

which completes the proof of theorem 1.3. �
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